Skip to Content.
Sympa Menu

homestead - [Homestead] Microgenerator to power laptops, eliminate batteries

homestead AT lists.ibiblio.org

Subject: Homestead mailing list

List archive

Chronological Thread  
  • From: tvoivozhd <tvoivozd AT infionline.net>
  • To: homestead AT lists.ibiblio.org
  • Subject: [Homestead] Microgenerator to power laptops, eliminate batteries
  • Date: Tue, 25 Jan 2005 09:13:18 -0500

/For more information contact:/
Megan McRainey, Institute Communications & Public Affairs
Contact Megan McRainey <http://www.gatech.edu/help/contact-person.php?name=Megan.McRainey>megan.mcrainey AT icpa.gatech.edu
404-894-6016


Georgia Tech Microgenerator Can Power Electronics


New microengines could provide 10 times longer life than batteries
for cell phones, laptops

*ATLANTA* (November 23, 2004) -- It may be tiny, but a new microgenerator developed at Georgia Tech can now produce enough power to run a small electronic device, like a cell phone, and may soon be able to power a laptop.

David Arnold, Dr. Iulica Zana and Dr. Jin-Woo Park
(From top to bottom) Postdoctoral fellow Dr. Jin-Woo Park, doctoral candidate David Arnold and postdoctoral fellow Dr. Iulica Zana with Tech's microgenerator
300 dpi JPG = 1.14 MB <http://www.gatech.edu/upload/pr/ter42134.jpg>

The microgenerator is about 10 millimeters wide, or about the size of a dime. When coupled with a similarly sized gas-fueled microturbine (or jet) engine, the system, called a microengine, has the potential to deliver more energy and last 10 times longer than a conventional battery.

Developed by doctoral candidate David Arnold, postdoctoral fellows Dr. Iulica Zana and Dr. Jin-Woo Park, and Professor Mark Allen, in the School of Electrical and Computer Engineering at Georgia Tech, the microgenerator produces useful amounts of electricity by spinning a small magnet above a mesh of coils fabricated on a chip. The microelectromechanical system (MEMS) was developed in close collaboration with Sauparna Das and Dr. Jeffrey Lang in the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT).

While work has been underway for several years on various microengine concepts, Georgia Tech's generator has now demonstrated the ability to produce the wattage necessary to power an electronic device, Arnold said.

"We can now get macro-scale power from a micro-scale device," Arnold added.

This advancement is a key step in microengines someday being incorporated into products and possibly replacing conventional batteries in certain electronics.

"This is an important step in the development of MEMS-based micro-power systems," Allen said.

The device's magnet spins at 100,000 revolutions per minute (rpm), much faster than the comparatively sluggish 3,000 rpm of an average car engine. Speed like that is capable of producing 1.1 watts of power, or enough juice to run a cell phone.

If the project reaches its projected goal, it will eventually produce as much as 20 to 50 watts, capable of powering a laptop.

The research is part of a larger project funded by the Army Research Laboratory to create lighter portable power sources to replace the heavy batteries that currently power a soldier's equipment, such as laptops, radios, and GPS systems. Researchers at the University of Maryland and Clark Atlanta University also collaborate on the project.

Georgia Tech microgenerator
The microgenerator produces useful amounts of electricity by spinning a small magnet above a mesh of coils fabricated on a chip
300 dpi JPG = 1.42 MB <http://www.gatech.edu/upload/pr/tdh42134.jpg>

One of the team's key problems was figuring out how to spin the magnet fast enough to get useful amounts of power, while keeping the magnet from breaking apart. High-performance magnets are brittle and easily broken up by the centrifugal force created by high speeds. To overcome this problem, the researchers have optimized the magnet dimensions and encased it in a titanium alloy to increase its strength.

In the lab, the team used an air-powered drill -- similar to what a dentist would use -- that simulates the spinning of the magnet by the micro gas turbine (still under development at MIT). Now that initial tests have been successful, they hope to increase the speeds to what would be used in an actual microengine to squeeze out more power.

The Georgia Tech/MIT team will present their progress with the project at the International Conference on Micro Electro Mechanical Systems (MEMS) in January.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked among /U.S. News & World Report/'s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding



  • [Homestead] Microgenerator to power laptops, eliminate batteries, tvoivozhd, 01/25/2005

Archive powered by MHonArc 2.6.24.

Top of Page