The majority of people visiting a news website donât care about the
front page. They might have reached your site from Google while
searching for a very specific topic. They might just be wandering
around. Or theyâre visiting your site because theyâre interested in one
specific event that you cover. This is big. It changes the way we
should think about news websites.
We need ambient findability.
We need smart ways of guiding people towards the content theyâd like to
see â with categorization and search playing complementary goals. And
we need smart ways to keep readers on our site, especially if theyâre
just following a link from Google or Facebook, by prickling their sense
of exploration.
Pete Bell recently opined that search is the enemy of information architecture.
Thatâs too bad, because weâre really going to need great search if
weâre to beat Wikipedia at its own game: providing readers with timely
information about topics they care about.
First, we need to understand a bit more about search. What is search?
Full-text search is a last resort
Rack your brain for a minute. Youâre searching for a document in a
repository. That repository might be the web, it might be an intranet
or it might be content from your local news outlet. Youâre using the
search box weâre all familiar with. I now ask you if youâre looking for
results that contain the words that make up your query. You give me a
quizzical look and answer: why, thatâs the point! But youâre wrong.
When somebody enters the query Tony Blair
, theyâre not looking for news articles that contain the words Tony Blair
, theyâre looking for news articles and assorted other information relating to Tony Blair. Tony Blair, the person, not Tony Blair
the string of letters. Theyâd be happy to see a biography for Blair,
for instance. Or an opinion piece written by the former Prime Minister.
Or maybe theyâre just searching for content about Labour from 1997 to
2007 when Blair was the PM.
Letâs make a small but important distinction. Thereâs relevance, and thereâs occurrence.
When you perform a search, youâre looking for relevant content. A
strong indicator of relevance is whether or not the words youâre
searching for occur in the result set, but that doesnât make relevance
and occurrence the same thing.
A good search engine goes beyond occurrence, by stemming and by
being aware of synonyms. The latter means simply that a search for illness
should also match documents about disease
unless you specifically tell the search engine you prefer to see only exact matches. Stemming means that a search for disaster happened before
should also match documents that contain a sentence like âDisaster happens every so often, weâve seen it before.â Happens
is not a part of that query, but itâs what you were looking for.
Google is amazing
at this sort of thing. Most search engines youâll see on news websites
arenât. But they should be, because although Google is in a whole
ânother league, stemming and synonym-awareness is a solved problem:
text indexers like Lucene do it very well.
But a good search engine that blazes through enormous quantities of
text is not good enough. Remember, oftentimes youâre not even searching
for text, youâre looking for things.
- If somebody searches for
economy
theyâre probably looking for stories categorized or tagged under economy
. - If you search for
Birmingham
on a news website, youâd
like to see all the news that has a link to the greater Birmingham
area. Considering that this is an area, maybe the best way to present
these results would be as a map and not as a list of results. More
about that later. - If you search for
Randy Newman about musicianship
youâll want to see all the content where Newman talks about his own and
other peopleâs music, and what would be really kick-ass is if the
search engine wouldnât return stories but instead would present you
with just those parts of the matched documents that are relevant. And
those fragments most likely wonât even contain the word musicianship
, even though theyâll be about musicianship.
Some of these wishes are a bit too wild for current technology. But
provided you have a solid information architecture in place (hint: this and this and this and this),
creating a great search experience is well within the realm of
possibility. Weâll take a two-pronged approach: weâll try to improve
search by not searching, and weâll also try to make things
better for those times when our readers really do want to or have to
search to find what they need.
The Sadness of Search
Our readers often donât know exactly what theyâre looking for.
Perhaps more importantly, people who land on on our site from Google
donât know about all the great similar content they could find if only
theyâd stick with our site for just a bit longer. Which is why most news websites still generate no more than a measly 15 pageviews per unique visitor per month.
We need to get readers to the content they would like to see as fast
and as effortlessly as possible, keep them engaged for longer when
theyâve found that content, and point them in the right direction when
they ask for either context, related or similar content.
(c) Peter Morville and Jeffery Callender
Getting people to the content they want to see, using the search
functionality your average newspaper website has on offer, is not
exactly what Iâd describe as fast or effortless. Full-text search can
be a daunting experience.
Poor search wastes time like a crooked street sign that
sends us in the wrong direction. It erodes trust, derails learning, and
confuses decisions. It makes us blame ourselves. [...] We feel sadness,
shame, anger, and disgust. Sometimes, we soldier on, unhappy but
resolute. Often we surrender. We simply fail to search. We live
uninformed without seeing what we miss (Peter Morville and Jeffery
Callender, Search Patterns, p. 19)
Full-text search is the web equivalent of searching for your keys.
They could be anywhere. Your surroundings give no indication whatsoever
of where they are to be found. Keys are small so itâs like finding a
needle in a haystack. Before long youâll be second-guessing yourself
and kicking yourself in the head because you probably didnât search
your jacket pockets thoroughly enough. Even though youâve rummaged
through them twice, earlier. Ahhhrr.
As I mentioned, we can try to make full-text search as palatable as
possible, but part of our strategy should be to make search superfluous
in most scenarios where people hope to find more or other information
on a certain topic. That means preemptive contextualization, blended
search-and-navigation, and assorted methods that humanize the search
experience.
Preemptive contextualization
Preemptive contextualization. Whew, now thatâs a mouthful. What it comes down to is that search is often very predictable:
people search for the same kinds of things, and have the same kinds of
questions. Predictable means avoidable. Donât make people use a search
engine to get answers to questions like:
Most news websites donât even provide a quick link to the portfolio of the author of the piece youâre reading?
The Texas Tribune does. Seriously, do you really need to be a Pulitzer-prize winning developer
or have the genius of the New York Times to realize people might want
to check out more stories or opinion pieces by the same author after
theyâve read a story they like? Do you really expect them to copy-paste
the name of that author into a search box and pray for the best?
We can preempt search in a number of ways. One of the most obvious
site-wide improvements we can make is to fashion a good information
architecture in the narrower sense of that term, namely IA as a way of
structuring content and constructing navigation on top of that. We need
kick-ass navigation:
superb primary navigation (what weâll present as the basic sections of
our site) and complementary secondary ways of navigating the site
(browsing by author, by topic and so on).
Primary navigation and secondary navigation should go together like toast and butter, and the final scheme should be based on
- the nature of your content
- what kinds of user interaction you expect or want to encourage
- analytics that give insight into how users click through your site
- AB-testing to make sure any enhancements you make along the way actually work
The
Texas Trib complements its primary navigation with the ability to
browse content by author or by topic. How neat would it be if we could
also browse by mood or by genre?
Most improvements we can make with preemptive contextualization are
not site-wide, however, but depend on the kind of page that prompted
the (type of) question in the first place. We should evaluate and
enhance each type of page separately, and think about frequently asked
questions we need to suggest the answers to, even before readers have
asked these questions.
The homepage is becoming less important than it
used to be, but it still gets a huge amount of traffic that we canât
afford to mess with. Here are some common questions on the homepage:
- Wow, Iâm overwhelmed. Whatâs on offer? Do you have a map? â We need some sort of a sitemap that acts as a gateway to our content and is broader than our primary navigation.
- Hmm, do you happen to have any reporting about banking reform? I thought that was all over the news? â We need deep links to the topics that are currently on peopleâs mind and that are being talked about.
The
Spokesman-Review provides a nice example of navigation that allows
people to explore what's on offer in a few different ways: by topic, by
timing, by place or by medium. Ryan Pitts reports mixed reactions by
readers. I hope they complement rather than replace their approach with
more traditional navigation.
Topic pages (e.g. about a person) should be able to quickly display and filter associated content by
- content type or medium: video, audio, text, data
- genre: interviews with that person, opinion pieces by or about that person, the positive or negative stories about him or her.
- related content: the organizations this person belongs to, events in which he or she has played a role
Story pages are obviously the most important part of our website. We can answer a lot of questions for our readers here:
- Eh, I donât understand this! â We need links to terms on Wikipedia (e.g. using Apture) or the ability to look things up in a dictionary (like the one they have over at the New York Times)
- Interesting piece, can you tell me a bit more about the shady organization that is mentioned in this story? â We need quick links to topic pages about related persons, organizations, events and locations.
- Mm-mm. I do love these long New Yorker-style features that seem to go on forever. More, please! â We need links to content in the same section or of the same genre or mood.
Do mind that if you include related content, make sure it doesnât
suck. Iâve had it up to here with ârelated contentâ boxes on news
websites that are nothing more than automated searches for related
content based on âsignificant keywordsâ in the content. It doesnât
work. Everybody hates it, itâs crap. If you really really must have it,
use Evri, which is halfway bearable. But try to do things the right way.
Related content should be referred to either using tags or if youâre really hip, using relationships.
These lists, while they donât have to be entirely hand-crafted, should
have a human touch. Explicitly linking back to previous reporting on a
certain topic is still the only reliable way of indicating follow-up
pieces and previous reporting.
And instead of naming it ârelated contentâ, try these instead: âmore
in this sectionâ, âother opinion pieces from this authorâ, âearlier
reporting on this subjectâ.
A bunch of links on a story page labelled "related content" or "similar content": the ultimate mystery food. Yuck.
Blend search and navigation: faceted search
All of the suggestions above improve findability and reduce frustration by replacing search with navigation.
But thereâs an entire gray area between search and nav as well, as Peter Morville points out in Search Patterns. After all, even something trivial like browsing a list of items within a category
to see what youâd want to read is search behavior too. Search behavior
doesnât always revolve around a big input box and a submit button.
If we canât preempt search, maybe we can improve the experience by
providing interfaces that are 50% search, 50% navigation. Itâs pretty
much unexplored territory, though.
Faceted search is probably the blended experience youâre most familiar with. Enter a search query, and then refine the results using a dynamically generated menu.
One
of the benefits of storing not just the text but also the properties of
a story, like its genre and theme, is that they provide all you need
for a faceted search engine.
But nothingâs for free. Faceted search needs facets: ways
of splitting up search results into meaningful categories. Rich
metadata and a well thought-out categorization scheme is a prequisite.
Humanizing search
Suppose youâd ask Steven Levy, âso, have you written anything about
Google lately?â âWell, yesâ, heâd respond, âIâve just written a cool
piece about their search algorithm for Wired!â And the natural follow-up would be something like: âSo, youâre looking for stuff about Google, eh? Have you read What Would Google Do
by Jeff Jarvis? Thatâs a good place to get started.â See how natural
that feels? First and foremost, we want to know about matches to our
exact query. But because most of the time we donât really know what
weâre doing or what to expect when we enter a search, a helping hand
that senses what we might have meant and gives additional suggestions
is exactly the ticket.
If somebody would ask me, âI think youâve written something about
structured content and serendipity, isnât that so?â, my answer would be
âAh, no, youâre quite mistaken. You mustâve read my article Weâre in the information business and clicked on the link to Adrian Holovatyâs A fundamental way newspaper sites need to change. Here ya go, let me link you up.â
Online search should work similarly to asking a question to a
flesh-and-blood reporter. I donât mean to exalt answering engines like AskJeeves or WolframAlpha.
I mean that search should incorporate some basic elements of what itâs
like to ask a human for a question, and for another human to give an
answer:
- Flexible scoping. If you insist on an exact
answer, youâre going to get one (or none, if we donât know the answer),
but otherwise weâll try our best to give an answer to a variation that
we can answer.
- Broad scoping. Itâs not because you ask me a question, that I
have to provide the answer off the top of my head or that the answer
must be something Iâve personally said or written. If I know of a book,
a magazine or an article thatâs a good match for your query, Iâll point
that out. Getting the answer is what counts, wherever we find it.
- Knowledge of intent and context. We get what weâre
getting at. We try to grasp the intent behind a question and return
results that might be helpful even if theyâre not a direct answer to
your question. We go beyond the precise question and, thank God, beyond
the precise terms used in formulating that question.
Applying these abstract principles to online search might seem to
require voodoo or sci-fi-style artificial intelligence, but actually,
it doesnât. There are a few feasible ways in which we can humanize our
search engines.
Best bets
Maybe we canât preempt search entirely, but then we can at least cut
it short and provide quick answers to common answers so readers donât
have to scan the dreary lists of content returned by our search engine.
They still can, if theyâre not happy with our preformulated answer or
Editorâs Choice, but most of the time our preselection will be all a
user needs.
Microsoft calls these best bets the Editor's Choice, which is a pretty apt description of what they do.
Best bets are easy to implement, as long as you have search
analytics. If you do, itâs only a matter of taking the ten or twenty or
fifty most common queries, hand-picking the most relevant content from
your website, and displaying those picks above the regular search
results. You can even implement this on top of a Google site search
engine, if your site doesnât have its own engine.
Weâd be foolish if we thought that best bets provide us with real
âknowledge of intent and contextâ, because we donât know the first
thing about the users that are doing the searching. We donât know what
their existing knowledge or read-state is like, we donât know their mood, we donât know what keeps them up at night. But while we can never really
understand a search query, hand-crafted human responses to common
search queries do go a long way towards solving search-related
usability problems.
Broad framing
Topic pages about persons, organizations, locations and events are
great ways to answer general inquiries by readers. After all, if you
have these kinds of pages, you probably spend hours and hours to get
them just right and to keep them up to date, hoping that your readers
will get something out of them.
A lot of search behavior stems from an attempt at learning.
So another way of cutting search short is by trying to ascertain what a
query is about and then, in addition to the full-text search, providing
quick links to relevant topic pages. Words like financial meltdown
as part of a query are a pretty good predictor that weâre looking for information about economics, finance and the global financial crisis. Chances are these pages will be way more valuable to me than a bunch of links to articles that contain the exact words financial meltdown
.
Even if plain-Jane full-text search was all a reader came in for,
the invitation to learn more about broader topics might be too enticing
to pass up. Isnât that exactly the Wikipedia-style exploratory browsing
(or wilfing) weâre so jealous of?
The simplest way of doing quick links to related topics would be to
simply boost the relevance of the âtopicâ content type while
configuring the search engine. That way these pages will end up at the
top of a lot of search results. Most any search engine is configurable
in this way.
Another way to accomplish these related links to high-value topics
pages, one thatâs a bit more refined, would be to programmatically
aggregate the themes/topics of each search result (you do have that sort of metadata, donât you?)
and serve up the topic pages related to the themes that that recur
most. One advantage over simply boosting the relevance of topics pages
would be improved accuracy. But more importantly, this approach allows
for more freedom in designing the experience, for example by putting
these references to broader topics in a separate box to the right of
the regular results, or by allowing you to display these topic pages by
type (person, organization, location, event).
Further improvements to the accuracy and usefulness of such âbroad
framingâ could probably be achieved by analyzing the semantic sphere
(the âaboutnessâ) of the query and to take it from there. Bringing natural language analysis
into the picture would allow us to go beyond the precise words of the
query and instead get a feel for its intent and meaning when suggesting
related topics. A vague feel, yes â machines and language are still a
tricky combo â but maybe itâs stuff that we can use.
Even basic versions of this pattern have the potential to enrichen
the search experience for a sizable amount of search queries, i.e. all
queries that are exploratory and donât have a precise intent.
Entity extraction
I mentioned before that we hardly ever really search for text: we
search for information about Steve Jobs, news nearby our home town, all
content that has something to do with climate change and so on.
Our search engine should be smart enough to extract these entities and use them to enhance the results we get back:
- If a query contains a date, we could display relevant events within that date range, either textually or in a timeline.
- If a query contains the name of a person, a link to the biography
of that person should be the first result people see. (If we have that
biography on hand, that is.)
- If a query contains a place name, we could display relevant results on a map centered on that location
Services like OpenCalais and Yahoo! Placemaker make entity extraction easy on us developers, by doing all the heavy lifting so we donât have to.
When we're searching for news about a certain area, it makes sense to display the results on a map.
Do note, though, that the more heavily tagged
and structured your content is, the more advantage you can take of
entity extraction. You canât return a biography as the first result in
a query, if that biography is not in any way differentiated from
regular news stories. You canât do location-aware search if you donât
store the relationships between news stories and locations. Enhancing
search often means enhancing the content that provides the raw material
for your search engine; you canât turn lead into gold.
Wisdom of the crowd
Flickr
has a lot of photos, but finding exactly what you want to see can be
hard. Most of the time, search is a back-and-forth experience that
involves multiple rounds of refining and tweaking the query. What if we
could use the research, the specific tweaks and refinements to the
original query, and use that data to inform the search of another user?
Thatâs exactly what Flickr does.
If youâd search Peter Morvilleâs photostream for microsoft
you wonât find any results, but Flickr knows from the search behavior of its users that a query for microsoft
is often tweaked to windows
,
and when those users click through to photos in that second result set,
Flickr knows that this second attempt was probably a success: theyâve
found what they needed. This works very similarly to how human beings
search for things:
Steven: I canât seem to find a good shop to buy these Adidas Millenium Falcon shoes. Iâve scoured three stores already with no luck.
Jon: Yeah, but those shoe shops along Columbus Avenue are a bad bet for
sneakers. Have you asked Ted? He went looking for those same ones last
week, and I think he found some.
So another neat little way of reducing frustration with search,
although one that requires a significant engineering effort, is to tool
your search engine to learn from the aggregated behavior of its users.
I want it all!
Okay, so weâve talked about some ways in which we can improve the
user experience during search. What we havenât talked about is what our
site should be searching. Again, this might seem to merit a simple
answer: why, the full text of our content, of course! But we can do
better than that.
Imagine me surfing your news website. Iâm interested to know more
about a person or a location or an organization. Since Iâve decided
that I want to search on one specific site, yours, rather
than via Google, you can safely assume I want to narrow my search and
that I donât want to search the entire web. I want to know what your
site has to say about whatever it is Iâm searching for. But what does that mean?
Not just stories and text
Donât forget about all the content that is available on your own site, yet often doesnât get indexed. Thereâs a nascent movement
towards journalists providing (wherever possible) their original
research material, allowing readers to explore a subject as fleetingly
or as deeply as they want. These Word and PDF files need to be
searchable as well, yet often they arenât. There are open-source tools
to return plain-text renditions of Word and PDF documents, and optical
character recognition (OCR), while not there yet, is getting better and better. DocumentCloud also allows people to easily annotate these kinds of source documents.
So a great search engine would know about all the cool stuff your
site has to offer, not just about the news reports in your database.
Hereâs a very incomplete list of things that should be searchable:
- news items
- documents (if necessary using OCR)
- video and audio (using transcriptions)
- topic pages, and assorted other content types that are not stories
- comments
- photographs (using tags)
- events (using dates)
Whatâs really ours: the border between your site and the rest of the internet
With the role of curation
and link journalism growing ever more important in journalism, what a
site has to say is no longer limited to the content that lives on your
own webserver. Good content links to articles and blog entries and
documents all over the web. That content doesnât exist on your site,
but for your readers youâre the gateway to that content, and they
should be able to find it not only when linearly reading an article,
but also when theyâre searching on your site.
Now hereâs the thing: if we index documents and other source
material, why donât we index the content of links to other websites as
well? Theyâre source materiaal just the same. By curating, your site
gives those links meaning. Theyâre part of your offering and they
should be searchable just like your own content is.
We want to design search that is not merely adequate but search
thatâs excellent. Excellence means thinking in terms of user
experience. When we think of search as a way for users to explore all
our varied offerings, the border between your site and the rest of the
internet becomes extremely vague. Perhaps we shouldnât just include
external webpages weâve linked to in our search repository, but
RSS-feeds from people and organizations we cover as well?
Users expect a search engine to search the site theyâre on, so we
shouldnât stray too far from that convention. However, when implemented
wisely, and with good visual cues that make it easy to tell apart
external content from your own, it can make sense to open up your
search engine a bit, and allow it to return meaningful results not just
from your own website, but from that part of the web and those topics
you cover.
There are two big tools that can help us index other parts of the web that are relevant to our own site.
- Web crawlers. A crawler can visits the links in our own content and adds them to our index.
- Search APIs. We can do clever things using the power of the Google, Yahoo! and Bing search APIs.
Searching a bigger part of the web than just your own website
requires storage and processing power, as well as a good design to
separate your own content from relevant content from elsewhere. Aside
from that, itâs hardly rocket science.
Humanizing search means a search engine should be able to give
answers to the question âwhatâs happening?â rather than just narrowly
answering âwhat is on this site?â. That said, it will take a lot of
experimentation to find the right balance.
Side note: beware
On a side note: beware of some of the newer tools in the reportersâ toolbox. Apps like Scribd and CoverItLive
store documents and text on their own servers, which makes them
inaccessible to your own search engine, unless you go to the additional
effort of integrating with their APIs. That is, if they actually have
an API you can integrate with. Keep your archives intact and complete.
Think about search before deciding to use any of these services. The
goal is to index more content than you currently do, not less!
Searching is learning
Search doesnât have to be awful, but itâs never going to be exactly
fun to skim through tens of hundreds of supposedly ârelevantâ results
to our query, hoping to find the ones weâre looking for. We can make
things better by allowing readers to quickly narrow down their search
using rich facets. We can support those readers who happen to be in an
exploratory mood by adding smart secondary navigation by genre, topic,
location and medium. We can answer questions readers might have about a
certain piece of content before they even ask them, preempting search.
When solid navigation, alternative ways of browsing and prefab answers to common types of questions arenât enough and people do
have to use the search engine, itâs only proper that we make the
experience as painless and human as possible. Itâs going to be hard,
but we should try to learn our search engine to understand the meaning and intent behind each query.
Search engines on news websites should make helpful suggestions
about content you might want to check out, even if you didnât
explicitly search for it.
Search engines should guide readers to topic pages that provide
excellent introductions to important parts of your coverage, like the broader context
behind events, biographies, company profiles and so on. More
importantly, we should guide readers to topic pages because theyâre
among the best gateways to your reporting. Definitely better than
search.
And we make sure to avoid uncharted territory that doesnât show up
in our search indexing not only our stories, but sources and documents
as well.
Newspapers try to help their readers in making sense of the world.
When we see readers exploring and searching, we see them at a crucial
point in time: a moment when theyâre ready, willing and eager to learn.
The power to turn exploration into learning is the most wonderful gift
we can give to our readers. We should help readers on their quest for
knowledge. Retooling navigation and search is a worthy first effort.
Findability and Exploration: the future of search
The majority of people visiting a news website donât care about the front page. They might have reached your site from Google while searching for a very specific topic. They might just be wandering around. Or theyâre visiting your site because theyâre interested in one specific event that you cover. This is big. It changes the way we should think about news websites.
We need ambient findability. We need smart ways of guiding people towards the content theyâd like to see â with categorization and search playing complementary goals. And we need smart ways to keep readers on our site, especially if theyâre just following a link from Google or Facebook, by prickling their sense of exploration.
Pete Bell recently opined that search is the enemy of information architecture. Thatâs too bad, because weâre really going to need great search if weâre to beat Wikipedia at its own game: providing readers with timely information about topics they care about.
First, we need to understand a bit more about search. What is search?
Full-text search is a last resort
Rack your brain for a minute. Youâre searching for a document in a repository. That repository might be the web, it might be an intranet or it might be content from your local news outlet. Youâre using the search box weâre all familiar with. I now ask you if youâre looking for results that contain the words that make up your query. You give me a quizzical look and answer: why, thatâs the point! But youâre wrong.
When somebody enters the query
Tony Blair
, theyâre not looking for news articles that contain the wordsTony Blair
, theyâre looking for news articles and assorted other information relating to Tony Blair. Tony Blair, the person, not Tony Blair the string of letters. Theyâd be happy to see a biography for Blair, for instance. Or an opinion piece written by the former Prime Minister. Or maybe theyâre just searching for content about Labour from 1997 to 2007 when Blair was the PM.Letâs make a small but important distinction. Thereâs relevance, and thereâs occurrence. When you perform a search, youâre looking for relevant content. A strong indicator of relevance is whether or not the words youâre searching for occur in the result set, but that doesnât make relevance and occurrence the same thing.
A good search engine goes beyond occurrence, by stemming and by being aware of synonyms. The latter means simply that a search for
illness
should also match documents aboutdisease
unless you specifically tell the search engine you prefer to see only exact matches. Stemming means that a search fordisaster happened before
should also match documents that contain a sentence like âDisaster happens every so often, weâve seen it before.âHappens
is not a part of that query, but itâs what you were looking for.Google is amazing at this sort of thing. Most search engines youâll see on news websites arenât. But they should be, because although Google is in a whole ânother league, stemming and synonym-awareness is a solved problem: text indexers like Lucene do it very well.
But a good search engine that blazes through enormous quantities of text is not good enough. Remember, oftentimes youâre not even searching for text, youâre looking for things.
economy
theyâre probably looking for stories categorized or tagged undereconomy
.Birmingham
on a news website, youâd like to see all the news that has a link to the greater Birmingham area. Considering that this is an area, maybe the best way to present these results would be as a map and not as a list of results. More about that later.Randy Newman about musicianship
youâll want to see all the content where Newman talks about his own and other peopleâs music, and what would be really kick-ass is if the search engine wouldnât return stories but instead would present you with just those parts of the matched documents that are relevant. And those fragments most likely wonât even contain the wordmusicianship
, even though theyâll be about musicianship.Some of these wishes are a bit too wild for current technology. But provided you have a solid information architecture in place (hint: this and this and this and this), creating a great search experience is well within the realm of possibility. Weâll take a two-pronged approach: weâll try to improve search by not searching, and weâll also try to make things better for those times when our readers really do want to or have to search to find what they need.
The Sadness of Search
Our readers often donât know exactly what theyâre looking for. Perhaps more importantly, people who land on on our site from Google donât know about all the great similar content they could find if only theyâd stick with our site for just a bit longer. Which is why most news websites still generate no more than a measly 15 pageviews per unique visitor per month. We need to get readers to the content they would like to see as fast and as effortlessly as possible, keep them engaged for longer when theyâve found that content, and point them in the right direction when they ask for either context, related or similar content.
(c) Peter Morville and Jeffery Callender
Getting people to the content they want to see, using the search functionality your average newspaper website has on offer, is not exactly what Iâd describe as fast or effortless. Full-text search can be a daunting experience.
Full-text search is the web equivalent of searching for your keys. They could be anywhere. Your surroundings give no indication whatsoever of where they are to be found. Keys are small so itâs like finding a needle in a haystack. Before long youâll be second-guessing yourself and kicking yourself in the head because you probably didnât search your jacket pockets thoroughly enough. Even though youâve rummaged through them twice, earlier. Ahhhrr.
As I mentioned, we can try to make full-text search as palatable as possible, but part of our strategy should be to make search superfluous in most scenarios where people hope to find more or other information on a certain topic. That means preemptive contextualization, blended search-and-navigation, and assorted methods that humanize the search experience.
Preemptive contextualization
Preemptive contextualization. Whew, now thatâs a mouthful. What it comes down to is that search is often very predictable: people search for the same kinds of things, and have the same kinds of questions. Predictable means avoidable. Donât make people use a search engine to get answers to questions like:
Most news websites donât even provide a quick link to the portfolio of the author of the piece youâre reading?
The Texas Tribune does. Seriously, do you really need to be a Pulitzer-prize winning developer or have the genius of the New York Times to realize people might want to check out more stories or opinion pieces by the same author after theyâve read a story they like? Do you really expect them to copy-paste the name of that author into a search box and pray for the best?
We can preempt search in a number of ways. One of the most obvious site-wide improvements we can make is to fashion a good information architecture in the narrower sense of that term, namely IA as a way of structuring content and constructing navigation on top of that. We need kick-ass navigation: superb primary navigation (what weâll present as the basic sections of our site) and complementary secondary ways of navigating the site (browsing by author, by topic and so on).
Primary navigation and secondary navigation should go together like toast and butter, and the final scheme should be based on
The Texas Trib complements its primary navigation with the ability to browse content by author or by topic. How neat would it be if we could also browse by mood or by genre?
Most improvements we can make with preemptive contextualization are not site-wide, however, but depend on the kind of page that prompted the (type of) question in the first place. We should evaluate and enhance each type of page separately, and think about frequently asked questions we need to suggest the answers to, even before readers have asked these questions.
The homepage is becoming less important than it used to be, but it still gets a huge amount of traffic that we canât afford to mess with. Here are some common questions on the homepage:
The Spokesman-Review provides a nice example of navigation that allows people to explore what's on offer in a few different ways: by topic, by timing, by place or by medium. Ryan Pitts reports mixed reactions by readers. I hope they complement rather than replace their approach with more traditional navigation.
Topic pages (e.g. about a person) should be able to quickly display and filter associated content by
Story pages are obviously the most important part of our website. We can answer a lot of questions for our readers here:
Do mind that if you include related content, make sure it doesnât suck. Iâve had it up to here with ârelated contentâ boxes on news websites that are nothing more than automated searches for related content based on âsignificant keywordsâ in the content. It doesnât work. Everybody hates it, itâs crap. If you really really must have it, use Evri, which is halfway bearable. But try to do things the right way.
Related content should be referred to either using tags or if youâre really hip, using relationships. These lists, while they donât have to be entirely hand-crafted, should have a human touch. Explicitly linking back to previous reporting on a certain topic is still the only reliable way of indicating follow-up pieces and previous reporting.
And instead of naming it ârelated contentâ, try these instead: âmore in this sectionâ, âother opinion pieces from this authorâ, âearlier reporting on this subjectâ.
A bunch of links on a story page labelled "related content" or "similar content": the ultimate mystery food. Yuck.
Blend search and navigation: faceted search
All of the suggestions above improve findability and reduce frustration by replacing search with navigation.
But thereâs an entire gray area between search and nav as well, as Peter Morville points out in Search Patterns. After all, even something trivial like browsing a list of items within a category to see what youâd want to read is search behavior too. Search behavior doesnât always revolve around a big input box and a submit button.
If we canât preempt search, maybe we can improve the experience by providing interfaces that are 50% search, 50% navigation. Itâs pretty much unexplored territory, though.
Faceted search is probably the blended experience youâre most familiar with. Enter a search query, and then refine the results using a dynamically generated menu.
One of the benefits of storing not just the text but also the properties of a story, like its genre and theme, is that they provide all you need for a faceted search engine.
But nothingâs for free. Faceted search needs facets: ways of splitting up search results into meaningful categories. Rich metadata and a well thought-out categorization scheme is a prequisite.
Humanizing search
Suppose youâd ask Steven Levy, âso, have you written anything about Google lately?â âWell, yesâ, heâd respond, âIâve just written a cool piece about their search algorithm for Wired!â And the natural follow-up would be something like: âSo, youâre looking for stuff about Google, eh? Have you read What Would Google Do by Jeff Jarvis? Thatâs a good place to get started.â See how natural that feels? First and foremost, we want to know about matches to our exact query. But because most of the time we donât really know what weâre doing or what to expect when we enter a search, a helping hand that senses what we might have meant and gives additional suggestions is exactly the ticket.
If somebody would ask me, âI think youâve written something about structured content and serendipity, isnât that so?â, my answer would be âAh, no, youâre quite mistaken. You mustâve read my article Weâre in the information business and clicked on the link to Adrian Holovatyâs A fundamental way newspaper sites need to change. Here ya go, let me link you up.â
Online search should work similarly to asking a question to a flesh-and-blood reporter. I donât mean to exalt answering engines like AskJeeves or WolframAlpha. I mean that search should incorporate some basic elements of what itâs like to ask a human for a question, and for another human to give an answer:
Applying these abstract principles to online search might seem to require voodoo or sci-fi-style artificial intelligence, but actually, it doesnât. There are a few feasible ways in which we can humanize our search engines.
Best bets
Maybe we canât preempt search entirely, but then we can at least cut it short and provide quick answers to common answers so readers donât have to scan the dreary lists of content returned by our search engine. They still can, if theyâre not happy with our preformulated answer or Editorâs Choice, but most of the time our preselection will be all a user needs.
Microsoft calls these best bets the Editor's Choice, which is a pretty apt description of what they do.
Best bets are easy to implement, as long as you have search analytics. If you do, itâs only a matter of taking the ten or twenty or fifty most common queries, hand-picking the most relevant content from your website, and displaying those picks above the regular search results. You can even implement this on top of a Google site search engine, if your site doesnât have its own engine.
Weâd be foolish if we thought that best bets provide us with real âknowledge of intent and contextâ, because we donât know the first thing about the users that are doing the searching. We donât know what their existing knowledge or read-state is like, we donât know their mood, we donât know what keeps them up at night. But while we can never really understand a search query, hand-crafted human responses to common search queries do go a long way towards solving search-related usability problems.
Broad framing
Topic pages about persons, organizations, locations and events are great ways to answer general inquiries by readers. After all, if you have these kinds of pages, you probably spend hours and hours to get them just right and to keep them up to date, hoping that your readers will get something out of them.
A lot of search behavior stems from an attempt at learning. So another way of cutting search short is by trying to ascertain what a query is about and then, in addition to the full-text search, providing quick links to relevant topic pages. Words like
financial meltdown
as part of a query are a pretty good predictor that weâre looking for information about economics, finance and the global financial crisis. Chances are these pages will be way more valuable to me than a bunch of links to articles that contain the exact wordsfinancial meltdown
.Even if plain-Jane full-text search was all a reader came in for, the invitation to learn more about broader topics might be too enticing to pass up. Isnât that exactly the Wikipedia-style exploratory browsing (or wilfing) weâre so jealous of?
The simplest way of doing quick links to related topics would be to simply boost the relevance of the âtopicâ content type while configuring the search engine. That way these pages will end up at the top of a lot of search results. Most any search engine is configurable in this way.
Another way to accomplish these related links to high-value topics pages, one thatâs a bit more refined, would be to programmatically aggregate the themes/topics of each search result (you do have that sort of metadata, donât you?) and serve up the topic pages related to the themes that that recur most. One advantage over simply boosting the relevance of topics pages would be improved accuracy. But more importantly, this approach allows for more freedom in designing the experience, for example by putting these references to broader topics in a separate box to the right of the regular results, or by allowing you to display these topic pages by type (person, organization, location, event).
Further improvements to the accuracy and usefulness of such âbroad framingâ could probably be achieved by analyzing the semantic sphere (the âaboutnessâ) of the query and to take it from there. Bringing natural language analysis into the picture would allow us to go beyond the precise words of the query and instead get a feel for its intent and meaning when suggesting related topics. A vague feel, yes â machines and language are still a tricky combo â but maybe itâs stuff that we can use.
Even basic versions of this pattern have the potential to enrichen the search experience for a sizable amount of search queries, i.e. all queries that are exploratory and donât have a precise intent.
Entity extraction
I mentioned before that we hardly ever really search for text: we search for information about Steve Jobs, news nearby our home town, all content that has something to do with climate change and so on.
Our search engine should be smart enough to extract these entities and use them to enhance the results we get back:
Services like OpenCalais and Yahoo! Placemaker make entity extraction easy on us developers, by doing all the heavy lifting so we donât have to.
When we're searching for news about a certain area, it makes sense to display the results on a map.
Do note, though, that the more heavily tagged and structured your content is, the more advantage you can take of entity extraction. You canât return a biography as the first result in a query, if that biography is not in any way differentiated from regular news stories. You canât do location-aware search if you donât store the relationships between news stories and locations. Enhancing search often means enhancing the content that provides the raw material for your search engine; you canât turn lead into gold.
Wisdom of the crowd
Flickr has a lot of photos, but finding exactly what you want to see can be hard. Most of the time, search is a back-and-forth experience that involves multiple rounds of refining and tweaking the query. What if we could use the research, the specific tweaks and refinements to the original query, and use that data to inform the search of another user? Thatâs exactly what Flickr does.
If youâd search Peter Morvilleâs photostream for
microsoft
you wonât find any results, but Flickr knows from the search behavior of its users that a query formicrosoft
is often tweaked towindows
, and when those users click through to photos in that second result set, Flickr knows that this second attempt was probably a success: theyâve found what they needed. This works very similarly to how human beings search for things:So another neat little way of reducing frustration with search, although one that requires a significant engineering effort, is to tool your search engine to learn from the aggregated behavior of its users.
I want it all!
Okay, so weâve talked about some ways in which we can improve the user experience during search. What we havenât talked about is what our site should be searching. Again, this might seem to merit a simple answer: why, the full text of our content, of course! But we can do better than that.
Imagine me surfing your news website. Iâm interested to know more about a person or a location or an organization. Since Iâve decided that I want to search on one specific site, yours, rather than via Google, you can safely assume I want to narrow my search and that I donât want to search the entire web. I want to know what your site has to say about whatever it is Iâm searching for. But what does that mean?
Not just stories and text
Donât forget about all the content that is available on your own site, yet often doesnât get indexed. Thereâs a nascent movement towards journalists providing (wherever possible) their original research material, allowing readers to explore a subject as fleetingly or as deeply as they want. These Word and PDF files need to be searchable as well, yet often they arenât. There are open-source tools to return plain-text renditions of Word and PDF documents, and optical character recognition (OCR), while not there yet, is getting better and better. DocumentCloud also allows people to easily annotate these kinds of source documents.
So a great search engine would know about all the cool stuff your site has to offer, not just about the news reports in your database. Hereâs a very incomplete list of things that should be searchable:
Whatâs really ours: the border between your site and the rest of the internet
With the role of curation and link journalism growing ever more important in journalism, what a site has to say is no longer limited to the content that lives on your own webserver. Good content links to articles and blog entries and documents all over the web. That content doesnât exist on your site, but for your readers youâre the gateway to that content, and they should be able to find it not only when linearly reading an article, but also when theyâre searching on your site.
Now hereâs the thing: if we index documents and other source material, why donât we index the content of links to other websites as well? Theyâre source materiaal just the same. By curating, your site gives those links meaning. Theyâre part of your offering and they should be searchable just like your own content is.
We want to design search that is not merely adequate but search thatâs excellent. Excellence means thinking in terms of user experience. When we think of search as a way for users to explore all our varied offerings, the border between your site and the rest of the internet becomes extremely vague. Perhaps we shouldnât just include external webpages weâve linked to in our search repository, but RSS-feeds from people and organizations we cover as well?
Users expect a search engine to search the site theyâre on, so we shouldnât stray too far from that convention. However, when implemented wisely, and with good visual cues that make it easy to tell apart external content from your own, it can make sense to open up your search engine a bit, and allow it to return meaningful results not just from your own website, but from that part of the web and those topics you cover.
There are two big tools that can help us index other parts of the web that are relevant to our own site.
Searching a bigger part of the web than just your own website requires storage and processing power, as well as a good design to separate your own content from relevant content from elsewhere. Aside from that, itâs hardly rocket science.
Humanizing search means a search engine should be able to give answers to the question âwhatâs happening?â rather than just narrowly answering âwhat is on this site?â. That said, it will take a lot of experimentation to find the right balance.
Side note: beware
On a side note: beware of some of the newer tools in the reportersâ toolbox. Apps like Scribd and CoverItLive store documents and text on their own servers, which makes them inaccessible to your own search engine, unless you go to the additional effort of integrating with their APIs. That is, if they actually have an API you can integrate with. Keep your archives intact and complete. Think about search before deciding to use any of these services. The goal is to index more content than you currently do, not less!
Searching is learning
Search doesnât have to be awful, but itâs never going to be exactly fun to skim through tens of hundreds of supposedly ârelevantâ results to our query, hoping to find the ones weâre looking for. We can make things better by allowing readers to quickly narrow down their search using rich facets. We can support those readers who happen to be in an exploratory mood by adding smart secondary navigation by genre, topic, location and medium. We can answer questions readers might have about a certain piece of content before they even ask them, preempting search.
When solid navigation, alternative ways of browsing and prefab answers to common types of questions arenât enough and people do have to use the search engine, itâs only proper that we make the experience as painless and human as possible. Itâs going to be hard, but we should try to learn our search engine to understand the meaning and intent behind each query.
Search engines on news websites should make helpful suggestions about content you might want to check out, even if you didnât explicitly search for it.
Search engines should guide readers to topic pages that provide excellent introductions to important parts of your coverage, like the broader context behind events, biographies, company profiles and so on. More importantly, we should guide readers to topic pages because theyâre among the best gateways to your reporting. Definitely better than search.
And we make sure to avoid uncharted territory that doesnât show up in our search indexing not only our stories, but sources and documents as well.
Newspapers try to help their readers in making sense of the world. When we see readers exploring and searching, we see them at a crucial point in time: a moment when theyâre ready, willing and eager to learn. The power to turn exploration into learning is the most wonderful gift we can give to our readers. We should help readers on their quest for knowledge. Retooling navigation and search is a worthy first effort.